On a System of Nonlinear Variational Inclusions with Hh,η-Monotone Operators

نویسندگان

  • Zeqing Liu
  • Jeong Sheok Ume
  • Shin Min Kang
  • Yongfu Su
چکیده

and Applied Analysis 3 4 strictly η-monotone if 〈 u − v, ηx, y > 0, ∀x, y ∈ H, x / y, u ∈ M x , v ∈ M ( y ) ; 2.5 5 strongly monotone if there exists a constant r > 0 satisfying 〈 u − v, x − y ≥ r∥x − y∥2, ∀x, y ∈ H, u ∈ M x , v ∈ My; 2.6 6 strongly η-monotone if there exists a constant r > 0 satisfying 〈 u − v, ηx, y ≥ r∥x − y∥2, ∀x, y ∈ H, u ∈ M x , v ∈ My; 2.7 7 maximal monotone resp., maximally strictly monotone, maximally strongly monotone if M is monotone resp., strictly monotone, strongly monotone and I λM H H for any λ > 0; 8 maximal η-monotone resp., maximally strictly η-monotone, maximally strongly ηmonotone if M is η-monotone resp., strictly η-monotone, strongly η-monotone and I λM H H for any λ > 0; 9 Hh-monotone resp., strictly Hh-monotone, strongly Hh-monotone if M is monotone resp., strictly monotone, strongly monotone and h λM H H for any λ > 0; 10 Hh,η-monotone resp., strictly Hh,η-monotone, strongly Hh,η-monotone if M is ηmonotone resp., strictly η-monotone, strongly η-monotone and h λM H H for any λ > 0. Definition 2.2. Let g : H → H and η : H ×H → H be operators. The operator g is called 1 Lipschitz continuous if there exists a constant r > 0 satisfying ∥g x − gy∥ ≤ r∥x − y∥, ∀x, y ∈ H; 2.8 2 monotone if 〈 g x − gy, x − y ≥ 0, ∀x, y ∈ H; 2.9 3 η-monotone if 〈 g x − gy, ηx, y ≥ 0, ∀x, y ∈ H; 2.10 4 strongly monotone if there exists a constant r > 0 satisfying 〈 g x − gy, x − y ≥ r∥x − y∥2, ∀x, y ∈ H; 2.11 4 Abstract and Applied Analysis 5 strongly η-monotone if there exists a constant r > 0 satisfying 〈 g x − gy, ηx, y ≥ r∥x − y∥2, ∀x, y ∈ H; 2.12 6 relaxed Lipschitz if there exists a constant r > 0 satisfying 〈 g x − gy, x − y ≤ −r∥x − y∥2, ∀x, y ∈ H. 2.13 Definition 2.3. Let N : H ×H → H and a, g : H → H be operators. The operator N is said to be 1 strongly monotone with respect to a and g in the first argument if there exists a constant r > 0 satisfying 〈 N a x , z −Nay, z, g x − gy ≥ r∥x − y∥2, ∀x, y, z ∈ H; 2.14 2 Lipschitz continuous in the first argument if there exists a constant r > 0 satisfying ∥N x,w −Ny,w∥ ≤ r∥x − y∥, ∀x, y,w ∈ H. 2.15 Similarly, we could define the strong monotonicity ofN with respect to a and g in the second argument and the Lipschitz continuity ofN in the second argument. Remark 2.4. For h I, the definition of the Hh-monotone resp., strictly Hh-monotone, strongly Hh-monotone operator reduces to the definition of the maximal monotone resp., maximally strictly monotone, maximally strongly monotone operator. Remark 2.5. Notice that M is maximal monotone resp., maximally strictly monotone, maximally strongly monotone if and only if M is monotone resp., strictly monotone, strongly monotone and there is no other monotone resp., strictly monotone, strongly monotone operator whose graph contains strictly the graph Graph M ofM. Lemma 2.6 see 20 . Let {αn}n≥0, {βn}n≥0 and {γn}n≥0 be nonnegative sequences satisfying αn 1 ≤ 1 − λn αn βnλn γn, ∀n ≥ 0, 2.16 where {λn}n≥0 ⊂ 0, 1 , ∑∞ n 0 λn ∞, limn→∞βn 0 and ∑∞ n 0 γn < ∞. Then limn→∞αn 0. 3. The Properties of Strictly Hh,η-Monotone Operators and Strongly Hh,η-Monotone Operators In this section, we discuss some properties of the set-valued strictlyHh,η-monotone operators and set-valued strongly Hh,η-monotone operators, respectively, dealing with a η-monotone operator h in Hilbert spaces. Abstract and Applied Analysis 5 Theorem 3.1. Let H be a real Hilbert space and let h : H → H, η : H ×H → H and M : H → 2 be operators such that h is η-monotone and M is strictlyHh,η-monotone. Then i M is maximally strictly η-monotone; ii h λM −1 : H → H is a single-valued operator for each λ > 0. Proof. i Since M is strictly Hh,η-monotone, it follows that M is strictly η-monotone. Suppose that there exists a strictly η-monotone set-valued operator A : H → 2 satisfying Graph A / Graph M , that is, there exists u0, x0 ∈ Graph A \Graph M such that 〈 x0 − y, η u0, v 〉 > 0, ∀v, y ∈ Graph M with v / u0. 3.1and Applied Analysis 5 Theorem 3.1. Let H be a real Hilbert space and let h : H → H, η : H ×H → H and M : H → 2 be operators such that h is η-monotone and M is strictlyHh,η-monotone. Then i M is maximally strictly η-monotone; ii h λM −1 : H → H is a single-valued operator for each λ > 0. Proof. i Since M is strictly Hh,η-monotone, it follows that M is strictly η-monotone. Suppose that there exists a strictly η-monotone set-valued operator A : H → 2 satisfying Graph A / Graph M , that is, there exists u0, x0 ∈ Graph A \Graph M such that 〈 x0 − y, η u0, v 〉 > 0, ∀v, y ∈ Graph M with v / u0. 3.1 Notice that h u0 λx0 ∈ H h λM H for any λ > 0. Thus there exists v0, y0 ∈ Graph M satisfying h v0 λy0 h u0 λx0, ∀λ > 0. 3.2 Suppose that u0 v0. Equation 3.2 means that x0 y0. Therefore, Graph M v0, y0 ) u0, x0 ∈ Graph A \Graph M , 3.3 which is impossible. Suppose that u0 / v0. It follows from 3.1 , 3.2 , and the η-monotonicity of h and strict η-monotonicity of A that 0 < 〈 x0 − y0, η u0, v0 〉 −λ−1h u0 − h v0 , η u0, v0 〉 ≤ 0, 3.4 which is a contradiction. Hence M is maximally strictly η-monotone. ii Suppose that there exists some u ∈ H such that h λM −1 u contains at least two different elements x and y. Since M is strictly Hh,η-monotone, h is η-monotone, and λ−1 u − h x ∈ M x , λ−1 u − h y ∈ M y , it follows that 0 < 〈 λ−1 u − h x − λ−1u − hy, ηx, y 〉 − λ−1h x − hy, ηx, y ≤ 0, 3.5 which is a contradiction. Consequently, the operator h λM −1 is single valued. This completes the proof. Definition 3.2. Let H be a real Hilbert space and let h : H → H, η : H × H → H and M : H → 2 be operators such that h is η-monotone andM is strictlyHh,η-monotone. Then for each λ > 0, the resolvent operator J M,λ : H → H is defined by J h,η M,λ x h λM −1 x , ∀x ∈ H. 3.6 6 Abstract and Applied Analysis Theorem 3.3. Let H be a real Hilbert space and let η : H ×H → H be Lipschitz continuous with constant Lη. Assume that h : H → H is η-monotone and M : H → 2 is stronglyHh,η-monotone with constant r. Then for every λ > 0, the resolvent operator J M,λ : H → H is Lipschitz continuous with constant Lη/λr. Proof. Since M is strongly Hh,η-monotone with constant r, it follows that M is strictly Hh,ηmonotone. Let x, y be in H. In view of λ−1 x − h J M,λ x ∈ M J h,η M,λ x and λ −1 y − h J M,λ y ∈ M J M,λ y and the strong monotonicity of M, we deduce that λ−1 〈 x − y, η ( J h,η M,λ x , J h,η M,λ ( y ))〉 − λ−1 〈 h ( J h,η M,λ x ) − h ( J h,η M,λ ( y )) , η ( J h,η M,λ x , J h,η M,λ ( y ))〉 〈 λ−1 ( x − h ( J h,η M,λ x )) − λ−1 ( y − h ( J h,η M,λ ( y ))) , η ( J h,η M,λ x , J h,η M,λ ( y ))〉 ≥ r ∥∥∥J h,η M,λ x − J h,η M,λ ( y )∥∥∥ 2 . 3.7

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Solvability of a New System of Nonlinear Variational-Like Inclusions

We introduce and study a new system of nonlinear variational-like inclusions involving sG, η maximal monotone operators, strongly monotone operators, η-strongly monotone operators, relaxed monotone operators, cocoercive operators, λ, ξ -relaxed cocoercive operators, ζ, φ, g-relaxed cocoercive operators and relaxed Lipschitz operators in Hilbert spaces. By using the resolvent operator technique ...

متن کامل

A SYSTEM OF GENERALIZED VARIATIONAL INCLUSIONS INVOLVING G-eta-MONOTONE MAPPINGS

We introduce a new concept of general $G$-$eta$-monotone operator generalizing the general $(H,eta)$-monotone operator cite{arvar2, arvar1}, general $H-$ monotone operator cite{xiahuang} in Banach spaces, and also generalizing $G$-$eta$-monotone operator cite{zhang}, $(A, eta)$-monotone operator cite{verma2}, $A$-monotone operator cite{verma0}, $(H, eta)$-monotone operator cite{fanghuang}...

متن کامل

A System of Parametric Variational Inclusions with (H, η)-Monotone Operators

In this paper, by using a resolvent operator technique of (H,η)monotone mappings, we study the behavior and sensitivity of the solutions of the system of parametric variational inclusions with (H,η)monotone operators in Hilbert spaces. Our results extend and improve the main results obtained by Agarwal, Huang and Tan [R. P. Agarwal, N. J. Huang and M. Y. Tan, Sensitivity analysis for a new syst...

متن کامل

Implicit Variational Inclusions and Algorithms Involving (A, η)-monotone Operators in 2-uniformly Smooth Banach Spaces

This paper deals with a new class of nonlinear set valued implicit variational inclusion problems involving (A, η)-monotone mappings in 2-uniformly smooth Banach spaces. Semi-inner product structure has been used to study the (A, η)-monotonicity. Using the generalized resolvent operator technique and the semi-inner product structure, the approximation solvability of the proposed problem is inve...

متن کامل

Sensitivity Analysis for a System of Variational Inclusions with (H,η)-Monotone Operators

In this paper, by using a resolvent operator technique of (H,η)-monotone mappings, we study the behavior and sensitivity of the solutions for a system of variational inclusions with (H,η)-monotone operators in Hilbert spaces. Mathematics Subject Classification: 49J40, 47H19, 47H10

متن کامل

On Nonlinear Variational Inclusions with (a, Η)-monotone Mappings

In this paper, we introduce a generalized system of nonlinear relaxed co-coercive variational inclusions involving (A, η)-monotone mappings in the framework of Hilbert spaces. Based on the generalized resolvent operator technique associated with (A, η)-monotonicity, we consider the approximation solvability of solutions to the generalized system. Since (A, η)-monotonicity generalizes A-monotoni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014